Deepseek突破AI训练烧钱魔咒:1.2万美元1/525成本MT-Bench跑分媲美GPT-4o - 果核剥壳

AI文摘
此内容由AI根据文章内容自动生成,并已由人工审核

Dee

4 月 8 日消息,深度求索(DeepSeek)联合清华大学,合作推出全新 AI 对齐技术 SPCT(自我原则点评调优),突破传统依赖海量训练数据的模式,通过推理阶段动态优化输出质量。

根据研究团队 4 月 4 日发表的论文,该技术通过“原则合成-响应生成-批判过滤-原则优化”的递归架构,让模型能在推理时动态修正输出。

SPCT 方法分为两个阶段。一是拒绝式微调作为冷启动阶段,让 GRM 适应不同输入类型并以正确格式生成原则与点评内容。二是基于规则的在线强化学习阶段,采用基于规则的结果奖励,鼓励 GRM 生成更好的原则与点评内容,提升推理阶段可扩展性。

Deepseek突破AI训练烧钱魔咒:1.2万美元1/525成本MT-Bench跑分媲美GPT-4o

测试中,270 亿参数的 DeepSeek-GRM 模型测试显示,通过每查询 32 次采样的推理计算,达到了 671B 规模模型的性能水平。这种硬件感知设计采用混合专家系统(MoE),支持 128k token 上下文窗口,单查询延迟仅 1.4 秒。

报告指出 SPCT 显著降低高性能模型的部署门槛,以 DeepSeek-GRM 模型为例,训练成本约 1.2 万美元(注:现汇率约合 87871 元人民币),MT-Bench 得分 8.35。

作为对比,340B 的 Nemotron-4 需 120 万美元获得 8.41 分。OpenAI 的 1.8T 参数 GPT-4o 虽得 8.72 分,但成本高达 630 万美元(现汇率约合 4613.2 万元人民币),而 DeepSeek-GRM 成本仅为 525 分之一。该技术减少 90% 人工标注需求,能耗较 DPO 降低 73%,为实时机器人控制等动态场景提供新可能。

如果您喜欢本站,点击这儿不花一分钱捐赠本站

这些信息可能会帮助到你: 下载帮助 | 报毒说明 | 进站必看

修改版本安卓软件,加群提示为修改者自留,非本站信息,注意鉴别

(0)
上一篇 2025年4月8日 上午10:48
下一篇 2025年4月8日 下午2:07

相关推荐

发表回复

评论问题之前,点击我,能帮你解决大部分问题

您的电子邮箱地址不会被公开。 必填项已用*标注